2016 Progressive Data Salary Survey Results

Kass DeVorsey
kdevorsey@gmail.com

Amit Mistry
amit.m.mistry@gmail.com

Annie J. Wang
anniejw6@gmail.com

$16^{\text {th }}$ August, 2016 at 08:17 EDT

1 Summary

This report includes survey responses from 266 individuals (up from 201 respondents in 2015), most of whom completed this survey between 16 May 2016 and 27 May 2016 but includes responses from as late as 4 August 2016.

Respondents were recruited using snowball sampling: the survey was announced on a few major progressive data e-mail listservs, and readers were encouraged to share the survey around their offices. Thank you to everyone who participated in or distributed this survey!

- We don't know if survey respondents reflect the progressive data and analytics community broadly: there are a lot of women, and a lot of people from DC
- The median total compensation reported is between $\$ 60,001$ and $\$ 75,000$ and varies by job focus, management responsibilities, and years of experience
- Even after controlling for characteristics like management responsbility and years of experience, we still see a gender wage gap of around $\$ 6,000$
- There is not strong evidence of a racial wage gap among respondents
- Women are less likely than men to negotiate job offers and, when negotiating, are less likely to succeed
- Non-whites negotiate at similiar rates as whites but are less likely to succeed
- A plurality of individuals think they are underpaid relative to others with similar positions in the field, and an almost equal number think they are comparably paid. Very few report thinking they are overpaid, but of those who do, they are more likely to be men.
- Microsoft Excel is the lingua franca of progressive data
- But respondents with stronger technical skills, e.f., in modeling, experimentation, data visualization, R , and Python, report higher salaries
- 'Data scientists' actually appear to have a different skillset than others in the field; by contrast, 'analytics director's do not meaningfully differentiate themselves through either hard or soft skills
- About 50% of all respondents and 35% of respondents not on a political campaign expect to switch jobs within the next year

We recommend that you download this report as a PDF and use the table of contents to navigate. We also provide a list of tables and figures.

Contents

1 Summary 1
2 Who are you people? 4
2.1 These survey respondents may not be representative 4
2.1.1 For starters, there are a lot of women 4
2.1.2 And everyone seems to be from DC 5
2.2 Respondents are about 75% white 5
2.3 There are more female than male non-whites among respondents 5
2.4 About 20% of respondents identify as LGBTQQIA 6
2.5 Most people only have a college degree, but non-whites are less likely to have advanced degrees and more likely to lack a college degree compared to whites 7
3 Where do respondents work, and what do they do? 8
3.1 Most people who answered this survey have a job 8
3.2 The most common organization types are consulting firms and political campaigns 8
3.2.1 Non-whites work in substantially different areas than whites 8
3.3 Most people work in "analytics" (whatever that means) 9
3.4 About 40% of respondents are managers, and 60% of managers are men 9
3.5 Most folks have worked in progressive politics for at least four years, and male respondents have generally been around longer 10
3.6 Almost 50% of respondents have worked in political campaigns within the last 5 years 12
3.6.1 Career trajectories are different by industry 12
3.7 The overwhelming majority of respondents DID NOT learn the skills they use through formal education. 13
3.7.1 Men are more likely to say they are self-taught while women say they learned through on-the-job training 14
4 What do people make? 14
4.1 The median salary is $\$ 68,000$ and the mean is $\$ 78,000$ 14
4.2 Including bonus, the median total compensation is around $\$ 68,000$ and the mean is $\$ 79,000$ 15
5 Breaking down what people make 16
5.1 The longer you've worked in politics, the more you make 16
5.2 PhDs bring in BANK 17
5.2.1 But non-college folks are doing fine too 18
5.3 Be an engineer 18
5.4 Not all directors are created equal 19
5.5 West coast, best coast? 20
5.6 Womp womp, the gender pay gap is real 20
5.6.1 ...even when you consider job focus 21
5.6.2 ...even when you consider organization type 23
5.6.3 ...even when you consider management responsibilties 24
5.6.4 ...even when you consider years of experience 25
5.6.5 Here's a linear regression for you fancy data science types 26
5.7 Good news - there actually isn't much of a pay differential by race 26
6 What are the perks? 27
6.1 If you care about benefits, avoid political campaigns 28
7 How do people negotiate and what happens when they do? 29
7.1 About half of all respondents negotiate 30
7.2 Men negotiate more than women, and they are more likely to succeed 30
7.3 Whites negotiate about as frequently as non-whites, but they are more likely to succeed 31
7.4 Labor unions and political campaigns: places where negotiation is challenging 32
8 What do you think of your salary? 33
8.1 A plurality of respondents think they are underpaid; very few think they are overpaid 33
8.2 Respondents who think they are underpaid actually have similar pay to respondents who think they are comparably paid 34
8.2.1 And this is true of both men and women 34
8.3 People who work at unions are happiest with their pay, vendors/non-consultant businesses are the least 35
8.4 Men are more likely than women to think they're overpaid while whites and non-whites have similar opinions of their salary 35
9 How are your skillz? 36
9.1 Excel is still king 36
9.2 Women self-report having lower levels of "hard" skills 38
9.3 Different jobs have different skills 42
9.4 'Data Scientist' actually means something! Meanwhile, analytics director does not 42
9.5 What should I learn for $\$ \$$? 44
9.5.1 If you're not a manager...brush up on those hard skills 45
9.5.2 If you are a manager...be a better manager? 47
10 Where are people going? 48
10.1 About 50% of all respondents and 35% of respondents not currently on a political campaign plan on changing organizations within the next year 48
11 Notes 49
12 List of Tables and Figures 50
13 Appendix 52
13.1 Most people don't have a bonus 52
13.2 Women are more likely to work at labor unions and political campaigns 53
13.3 Women have roughly the same levels of educational attainment as men 53
13.4 Whites and non-whites have roughly comparable years of experience 53
13.5 Even within the same job focus, women report lower skillsets 54
14 Survey Questionnaire 55
14.1 About You 55
14.2 Current Job and Salary Information 56
14.3 Rate your skills and abilities 59

2 Who are you people?

2.1 These survey respondents may not be representative

2.1.1 For starters, there are a lot of women

Table 1: Counts by Gender		
Category	N	Percent
Female	138	51.9%
Male	125	47.0%
Other	3	1.1%

For reference, last year's salary survey was 36% women and 64% men. ${ }^{1}$

[^0]
2.1.2 And everyone seems to be from DC

Table 2: Counts by Location

Category	N	Percent
Washington, DC	120	45.1%
New York City	52	19.5%
Other major US city (over 1 million people)	33	12.4%
Smaller city/town	30	11.3%
Chicago	15	5.6%
San Francisco	5	1.9%
Los Angeles	4	1.5%
Rural area	4	1.5%
Canada	1	0.4%
Europe	1	0.4%
Oceania	1	0.4%

I can't even make a fun joke about liberal coastal elites because we can't even manage to be bi-coastal.

2.2 Respondents are about 75% white

Table 3: Counts by Race/Ethnicity

Category	N	Percent
White	200	75.2%
Hispanic/Latino	17	6.4%
Asian-American	15	5.6%
Multiracial	14	5.3%
Other	8	3.0%
African-American	7	2.6%
Middle Eastern / Arab-American	5	1.9%

By contrast, last year's survey was 80% white.

2.3 There are more female than male non-whites among respondents

Note that non-white is defined as any racial category other than 'white', including mixed-race individuals.

Figure 1: Counts by Race and Gender

Table 4: Counts by Gender and Race

Overall	Female		Male	
Category	N	Percent	N	Percent
White	97	70.3%	100	80.0%
Hispanic/Latino	13	9.4%	4	3.2%
Asian-American	5	3.6%	10	8.0%
Multiracial	10	7.2%	4	3.2%
Other	6	4.3%	2	1.6%
African-American	5	3.6%	2	1.6%
Middle Eastern / Arab-American	2	1.4%	3	2.4%

2.4 About $\mathbf{2 0 \%}$ of respondents identify as LGBTQQIA

Note LGBTQQIA stands for Lesbian, Gay, Bisexual, Transgender, Queer, Questioning, Intersex, and Asexual.

Table 5: Counts by Sexual Identity

Category	N	Percent
I do not identify with any of these identities	210	78.9%
I identify with one of these identities	42	15.8%
I identify with two or more of these identities	10	3.8%
Refused/Missing	4	1.5%

By contrast, last year's survey was 15% LGBTQQIA.

2.5 Most people only have a college degree, but non-whites are less likely to have advanced degrees and more likely to lack a college degree compared to whites

Table 6: Counts by Education Level

Category	N	Percent
No College Degree	19	7.1%
Bachelor's Degree	163	61.3%
Post-bachelor's Work, no Higher Degree	19	7.1%
Master's Degree	48	18.0%
PhD or Equivalent	17	6.4%

Figure 2: Proportions of Educational Attainment by Race

(This might get problematic if you decide that the only possible person who could do your data job is a Physics PhD from Stanford...)

Table 7: Counts by Race and Education Level

Overall	Non-White		White	
Category	N	Percent	N	Percent
No College Degree	9	13.6%	10	5.0%
Bachelor's Degree	42	63.6%	121	60.5%
Post-bachelor's Work, no Higher Degree	5	7.6%	14	7.0%
Master's Degree	8	12.1%	40	20.0%
PhD or Equivalent	2	3.0%	15	7.5%

We looked at educational attainment by gender too, but didn't see anything interesting. The results are displayed
as Table 48 in the Appendix.

3 Where do respondents work, and what do they do?

3.1 Most people who answered this survey have a job

This makes it somewhat easier to conduct a salary survey.

Table 8: Counts by Employment Status

Category	N	Percent
Full time at 1 job	231	86.8%
Full time at 1 job plus additional paid work	23	8.6%
Part time (personal choice)	2	0.8%
Part time (cannot find full time work)	1	0.4%
Freelance / contracting / self-employed	7	2.6%
Unemployed	2	0.8%

3.2 The most common organization types are consulting firms and political campaigns

Table 9: Counts by Organization Type

Category	N	Percent
Consulting firm	60	22.6%
Political campaign	54	20.3%
Non-profit/c3/c4	42	15.8%
Business (non-consulting)	31	11.7%
Labor union	31	11.7%
Party committee	31	11.7%
Other private sector	11	4.1%
Other public sector	4	1.5%
Unemployed	2	0.8%

3.2.1 Non-whites work in substantially different areas than whites

In fact, we ran a chi-squared test ${ }^{2}$ of these org type and race, and the p-value was $0.033 .{ }^{3}$

[^1]Table 10: Counts by Organization Type and Race

Overall	Non-White		White	
Category	N	Percent	N	Percent
Consulting firm	12	18.8%	48	24.0%
Political campaign	20	31.2%	34	17.0%
Non-profit/c3/c4	12	18.8%	30	15.0%
Business (non-consulting)	4	6.2%	27	13.5%
Labor union	9	14.1%	22	11.0%
Party committee	4	6.2%	27	13.5%
Other private sector	2	3.1%	9	4.5%
Other public sector	1	1.6%	3	1.5%

We did the same thing for gender, but didn't see anything interesting, so you can find Table 47 in the Appendix.

3.3 Most people work in "analytics" (whatever that means)

Table 11: Counts by Job Focus		
Category	N	Percent
Analytics	85	32.0%
Field data	57	21.4%
Engineering	37	13.9%
Digital	18	6.8%
Consulting	17	6.4%
Other data	17	6.4%
Other	11	4.1%
Polling	11	4.1%
Experiments	8	3.0%
Fundraising	5	1.9%

3.4 About 40% of respondents are managers, and 60% of managers are men

These figures everyone who reports "up the chain" to respondents, both directly or through layer(s) of management.

Table 12: Counts by Management Responsibilities

Category	N	Percent
No	162	60.9%
Yes, 1 to 4	76	28.6%
Yes, 5 to 9	20	7.5%
Yes, more than 10	8	3.0%

Table 13: Counts by Management Responsibilities and Gender

Overall	Female		Male	
Category	N	Percent	N	Percent
No	98	71.0%	61	48.8%
Yes, 1 to 4	27	19.6%	49	39.2%
Yes, 5 to 9	9	6.5%	11	8.8%
Yes, more than 10	4	2.9%	4	3.2%

This graph displays the proportion of managers and non-managers that are men and women. Recall that the number of male and female respondents is roughly equal.

Figure 3: Proportions of Managers and Non-Managers by Gender

This could mean that in 1-5 years, we're going to be seeing a crop of female managers. Or this has always been the case, and they'll all have left by then.

3.5 Most folks have worked in progressive politics for at least four years, and male respondents have generally been around longer

Note that the survey question was "Years of Experience in the Progressive Space", and not, say, "Years of experience in progressive data".

Table 14: Counts by Years of Experience in Progressive Politics

Category	N	Percent
Under 1 year	19	7.1%
1-2 years	29	10.9%
$2-4$ years	61	22.9%
$4-6$ years	67	25.2%
$6-10$ years	56	21.1%
10 years or more	34	12.8%

The average number of years of experience is 5.1. In last year's salary survey, which asked for years in data (not just years in politics), the average was 5.1 years.

This graph displays, for each experience category, the percentage of respondents who are men vs. women. (Recall that roughly equal numbers of men and women answered this survey.) Women are dramatically overrepresented among those with 1-2 years of experience, and men are over-represented among those with 10 years or more of experience.

Figure 4: Proportions of Years of Experience by Gender

Table 15: Counts by Years of Experience and Gender

Overall	Female		Male	
Category	N	Percent	N	Percent
Under 1 year	9	6.5%	9	7.2%
1-2 years	22	15.9%	7	5.6%
2-4 years	33	23.9%	28	22.4%
4-6 years	34	24.6%	31	24.8%
6-10 years	26	18.8%	30	24.0%
10 years or more	14	10.1%	20	16.0%

We also looked at the breakdown of years of experience by race but didn't see anything particularly interesting. You can see that analysis in Table 49 in the Appendix.

3.6 Almost 50% of respondents have worked in political campaigns within the last 5 years

Respondents were allowed to select multiple options. For every category, we display the percentage of respondents who selected that option (potentially among multiple).

Table 16: Distribution of Past Professional History

Category	N	Percent
Political campaign	135	50.8%
Nonprofit/c3/c4	125	47.0%
Consulting firm	90	33.8%
Party committee	58	21.8%
Freelance	50	18.8%
Labor union	48	18.0%
Other private sector	46	17.3%
Business (non-consulting)	45	16.9%
Other public sector	32	12.0%

3.6.1 Career trajectories are different by industry

This graph shows past employment against current organization (among current organizzations with least 15 respondents). For example, just under 50% of people who currently work for a consulting firm worked on a political campaign within the last 5 years. By contrast, only about 30% of people currently working for a labor union did the same. ${ }^{4}$

[^2]Figure 5: Distribution of Work History by Current Organization Type

3.7 The overwhelming majority of respondents DID NOT learn the skills they use through formal education.

Where did you learn the majority of skills you use in your current job?

Table 17: Counts by Skills Acquisition

Category	N	Percent
Formal education	31	11.7%
On the job training	170	63.9%
Self taught (incl online courses)	58	21.8%
Other	7	2.6%

3.7.1 Men are more likely to say they are self-taught while women say they learned through on-the-job training

Table 18: Counts by Skills Acquisition and Gender

Overall	Female		Male	
Category	N	Percent	N	Percent
Formal education	17	12.3%	14	11.2%
On the job training	96	69.6%	73	58.4%
Self taught (incl online courses)	21	15.2%	35	28.0%
Other	4	2.9%	3	2.4%

(Some idle speculation: are men actually more likely to be self-taught, or do men and women merely define self-taught differently?)

4 What do people make?

4.1 The median salary is $\mathbf{\$ 6 8 , 0 0 0}$ and the mean is $\mathbf{\$ 7 8 , 0 0 0}$

Salary is defined as yearly pre-tax income, excluding bonuses or commissions

Table 19: Counts by Salary Range

Category	N	Percent
Less than $\$ 30,000$	1	0.4%
$\$ 30,001-\$ 45,000$	9	3.4%
$\$ 45,001-\$ 60,000$	51	19.2%
$\$ 60,001-\$ 75,000$	80	30.1%
$\$ 75,001-\$ 100,000$	66	24.8%
$\$ 100,001-\$ 125,000$	32	12.0%
$\$ 125,001$ or higher	20	7.5%
Other, e.g. freelance, unemployed	7	2.6%

Figure 6: Distribution of Salary

4.2 Including bonus, the median total compensation is around $\mathbf{\$ 6 8 , 0 0 0}$ and the mean is $\mathbf{\$ 7 9 , 0 0 0}$

This is slightly higher than last year's salary survey, in which the mean total compensation was $\$ 76,506$.
Note that the third column is not necessary the sum of the first two columns. This is because we're taking the median of non-missing/refused values.

Table 20: Summary of Total Compensation

	Salary Only	Bonus Only	Salary + Bonus
Median	$\$ 67,500$	$\$ 2,250$	$\$ 67,500$
Mean	$\$ 78,456$	$\$ 6,302$	$\$ 79,478$
St Dev	$\$ 23,888$	$\$ 12,501$	$\$ 25,046$
N	259	42	259

Figure 7: Distribution of Total Compensation

5 Breaking down what people make

5.1 The longer you've worked in politics, the more you make

There is a positive relationship between years of experience and total compensation. But there's a decent amount of variation of pay among people with similar years of experience.
(And yes, the line still basically looks the same even if you take out those outliers.)

Figure 8: Total Compensation against Years of Experience

Table 21: Distribution of Total Compensation by Years of Experience

Category	N	Median	Mean	St Dev
Under 1 year	19	$\$ 87,500$	$\$ 84,632$	$\$ 25,428$
$1-2$ years	29	$\$ 56,500$	$\$ 62,110$	$\$ 16,611$
$2-4$ years	59	$\$ 67,500$	$\$ 69,425$	$\$ 18,781$
4-6 years	65	$\$ 67,500$	$\$ 77,496$	$\$ 22,123$
6-10 years	53	$\$ 87,500$	$\$ 88,738$	$\$ 26,051$
10 years or more	34	$\$ 87,750$	$\$ 98,206$	$\$ 26,666$
Grand Total	259	$\$ 67,500$	$\$ 79,478$	$\$ 25,046$

Figure 9: Distribution of Total Compensation by Years of Experience

5.2 PhDs bring in BANK

As they should after giving up 5 years of their lives...

Table 22: Distribution of Total Compensation by Education Level

Category	N	Median	Mean	St Dev
No College Degree	19	$\$ 87,500$	$\$ 82,158$	$\$ 24,947$
Bachelor's Degree	159	$\$ 67,500$	$\$ 77,158$	$\$ 25,666$
Post-bachelor's Work, no Higher Degree	19	$\$ 87,500$	$\$ 82,632$	$\$ 24,615$
Master's Degree	45	$\$ 67,500$	$\$ 78,400$	$\$ 22,358$
PhD or Equivalent	17	$\$ 105,000$	$\$ 97,500$	$\$ 20,771$
Grand Total				

5.2.1 But non-college folks are doing fine too

It is really is about that PhD , but not advanced degrees generally. In fact, folks without a college degree are making comparable amounts to those with advanced (post-Bachelor's) work.

Table 23: Distribution of Total Compensation by Simplified Education Level

Category	N	Median	Mean	St Dev
No College Degree	19	$\$ 87,500$	$\$ 82,158$	$\$ 24,947$
Bachelor's Degree	159	$\$ 67,500$	$\$ 77,158$	$\$ 25,666$
Post Bachelor's Work/Degree	81	$\$ 87,500$	$\$ 83,401$	$\$ 23,537$
Grand Total	259	$\$ 67,500$	$\$ 79,478$	$\$ 25,046$

5.3 Be an engineer

Table 24: Distribution of Total Compensation by Job Focus

Category	N	Median	Mean	St Dev
Analytics	82	$\$ 87,500$	$\$ 83,853$	$\$ 23,294$
Field data	55	$\$ 67,500$	$\$ 70,131$	$\$ 20,846$
Engineering	37	$\$ 87,500$	$\$ 94,297$	$\$ 24,988$
Consulting	17	$\$ 87,500$	$\$ 85,000$	$\$ 35,194$
Digital	17	$\$ 67,500$	$\$ 67,647$	$\$ 22,334$
Other data	17	$\$ 67,500$	$\$ 73,971$	$\$ 19,102$
Other	11	$\$ 87,500$	$\$ 80,318$	$\$ 28,169$
Polling	11	$\$ 67,500$	$\$ 68,500$	$\$ 21,429$
Experiments	7	$\$ 87,500$	$\$ 85,071$	$\$ 23,310$
Fundraising	5	$\$ 52,500$	$\$ 55,500$	$\$ 6,708$
Grand Total	259	$\$ 67,500$	$\$ 79,478$	$\$ 25,046$

Figure 10: Distribution of Total Compensation by Job Focus

5.4 Not all directors are created equal

Fun fact: 218 people submitted a job title. Within those submission, there are 149 unique titles. ${ }^{5}$ We bucketed these into 12 categories largely by eye-balling it.

[^3]Table 25: Distribution of Total Compensation by Job Title

Category	N	Median	Mean	St Dev
Account Exec / Implementation	7	$\$ 87,500$	$\$ 76,157$	$\$ 23,656$
Data Manager	22	$\$ 67,500$	$\$ 65,659$	$\$ 21,226$
Data Director	23	$\$ 67,500$	$\$ 73,804$	$\$ 20,724$
Analyst	30	$\$ 67,500$	$\$ 67,433$	$\$ 18,119$
Data Scientist	14	$\$ 77,500$	$\$ 81,929$	$\$ 19,941$
Dev/Engineering	32	$\$ 87,500$	$\$ 85,827$	$\$ 27,017$
Management	20	$\$ 77,500$	$\$ 80,400$	$\$ 24,285$
Analytics Director	27	$\$ 87,500$	$\$ 89,278$	$\$ 24,652$
Director-Level	27	$\$ 87,500$	$\$ 94,801$	$\$ 28,714$
Freelance	5	$\$ 87,500$	$\$ 89,400$	$\$ 29,842$
Other	5	$\$ 52,500$	$\$ 59,500$	$\$ 15,652$
Grand Total	212	$\$ 67,500$	$\$ 79,784$	$\$ 25,269$

5.5 West coast, best coast?

Table 26: Distribution of Total Compensation by Location

Category	N	Median	Mean	St Dev
Washington, DC	117	$\$ 87,500$	$\$ 84,010$	$\$ 27,071$
New York City	51	$\$ 67,500$	$\$ 77,353$	$\$ 22,189$
Other major US city (over 1 million people)	32	$\$ 67,500$	$\$ 73,445$	$\$ 23,408$
Smaller city/town	29	$\$ 67,500$	$\$ 67,138$	$\$ 18,356$
Chicago	15	$\$ 67,500$	$\$ 79,667$	$\$ 23,008$
San Francisco	5	$\$ 112,500$	$\$ 101,000$	$\$ 23,157$
Los Angeles	4	-	-	-
Rural area	4	-	-	-
Canada	1	-	-	-
Oceania	1	-	-	-
Grand Total	249	$\$ 67,500$	$\$ 79,404$	$\$ 25,091$

5.6 Womp womp, the gender pay gap is real

Table 27: Distribution of Total Compensation by Gender

Category	N	Median	Mean	St Dev
Female	135	$\$ 67,500$	$\$ 74,369$	$\$ 22,441$
Male	121	$\$ 87,500$	$\$ 85,722$	$\$ 26,539$
Other	3	-	-	-
Grand Total	256	$\$ 67,500$	$\$ 79,735$	$\$ 25,067$

5.6.1 ...even when you consider job focus

Table 28: Distribution of Total Compensation by Job Focus and Gender

Overall	Female							
Category	N	Median	Mean	St Dev	N	Median	Mean	St Dev
Analytics	40	$\$ 67,500$	$\$ 79,765$	$\$ 24,745$	41	$\$ 87,500$	$\$ 88,607$	$\$ 20,912$
Field data	32	$\$ 67,500$	$\$ 67,584$	$\$ 20,189$	23	$\$ 67,500$	$\$ 73,674$	$\$ 21,674$
Engineering	15	$\$ 87,500$	$\$ 83,233$	$\$ 23,304$	21	$\$ 112,500$	$\$ 103,476$	$\$ 22,969$
Digital	11	$\$ 67,500$	$\$ 69,091$	$\$ 21,397$	6	$\$ 60,000$	$\$ 65,000$	$\$ 25,836$
Other data	10	$\$ 67,500$	$\$ 73,000$	$\$ 18,174$	7	$\$ 67,500$	$\$ 75,357$	$\$ 21,767$
Consulting	10	$\$ 75,000$	$\$ 72,200$	$\$ 23,305$	6	$\$ 91,500$	$\$ 111,750$	$\$ 39,854$
Other	5	$\$ 69,500$	$\$ 73,700$	$\$ 15,912$	6	$\$ 87,500$	$\$ 85,833$	$\$ 36,113$
Polling	6	$\$ 67,500$	$\$ 73,333$	$\$ 24,983$	5	$\$ 55,500$	$\$ 62,700$	$\$ 17,050$
Experiments	4	-	-	-	3	-	-	-
Fundraising	2	-	-	-	3	-	-	-
Grand Total	129	$\$ 67,500$	$\$ 74,591$	$\$ 22,514$	115	$\$ 87,500$	$\$ 86,234$	$\$ 26,573$

Figure 11: Distribution of Total Compensation by Job Focus and Gender

\square Female \square Male

5.6.2 ...even when you consider organization type

Table 29: Distribution of Total Compensation by Organization Type and Gender

Overall	Female					Male		
Category	N	Median	Mean	St Dev	N	Median	Mean	St Dev
Consulting firm	28	$\$ 77,500$	$\$ 80,911$	$\$ 24,694$	27	$\$ 87,500$	$\$ 93,370$	$\$ 32,428$
Political campaign	32	$\$ 67,500$	$\$ 69,297$	$\$ 18,450$	22	$\$ 67,500$	$\$ 78,636$	$\$ 21,709$
Non-profit/c3/c4	18	$\$ 67,500$	$\$ 66,917$	$\$ 22,068$	22	$\$ 77,500$	$\$ 78,409$	$\$ 24,755$
Labor union	20	$\$ 67,500$	$\$ 79,785$	$\$ 22,462$	11	$\$ 87,500$	$\$ 86,318$	$\$ 18,449$
Business (non-consulting)	17	$\$ 67,500$	$\$ 70,594$	$\$ 18,020$	13	$\$ 88,000$	$\$ 91,471$	$\$ 21,766$
Party committee	15	$\$ 67,500$	$\$ 68,000$	$\$ 19,735$	15	$\$ 67,500$	$\$ 72,167$	$\$ 19,682$
Other private sector	4	-	-	-	7	$\$ 125,000$	$\$ 119,321$	$\$ 22,806$
Other public sector	1	-	-	-	3	-	-	-
Grand Total	130	$\$ 67,500$	$\$ 73,102$	$\$ 21,527$	117	$\$ 87,500$	$\$ 85,747$	$\$ 26,699$

Figure 12: Distribution of Total Compensation by Organization Type and Gender

\qquad
5.6.3 ...even when you consider management responsibilties

Table 30: Distribution of Total Compensation by Management Responsibilities and Gender

Overall	Female										Male				
Category	N	Median	Mean	St Dev	N	Median	Mean	St Dev							
No	95	$\$ 67,500$	$\$ 70,340$	$\$ 21,751$	57	$\$ 67,500$	$\$ 76,737$	$\$ 24,592$							
Yes, 1 to 4	27	$\$ 67,500$	$\$ 79,204$	$\$ 20,878$	49	$\$ 87,500$	$\$ 89,148$	$\$ 22,576$							
Yes, 5 to 9	9	$\$ 87,500$	$\$ 91,833$	$\$ 17,755$	10	$\$ 106,562$	$\$ 105,262$	$\$ 17,127$							
Yes, more than 10	4	-	-	-	4	-	-	-							
Grand Total	131	$\$ 67,500$	$\$ 73,644$	$\$ 22,045$	116	$\$ 87,500$	$\$ 84,439$	$\$ 24,632$							

Figure 13: Total Salary against Years of Experience and Gender

Figure 14: Total Compensation against Years of Experience and Gender

5.6.5 Here's a linear regression for you fancy data science types

Table 31: Regression of Salary on Gender, Years of Experience, and Management Responsibilities

	Dependent variable:
	Total Compensation
Male	$\begin{gathered} 6,197.158^{* *} \\ (2,741.619) \end{gathered}$
Years of Experience	$\begin{gathered} 2,099.241^{* * *} \\ (469.984) \end{gathered}$
Manage 1-4	$\begin{gathered} 8,703.920^{* * *} \\ (3,084.123) \end{gathered}$
Manage 5-9	$\begin{gathered} 19,911.120^{* * *} \\ (5,257.143) \end{gathered}$
Manage 10+	$\begin{gathered} 23,749.240^{* * *} \\ (7,891.319) \end{gathered}$
Constant	$\begin{gathered} 60,358.720^{* * *} \\ (2,813.459) \end{gathered}$
Observations	255
R^{2}	0.237
Adjusted R ${ }^{2}$	0.222
Residual Std. Error	$21,078.290(\mathrm{df}=249)$
F Statistic	$15.494^{* * *}(\mathrm{df}=5 ; 249)$
Note:	0.1; ${ }^{* *} \mathrm{p}<0.05 ;^{* * *} \mathrm{p}<0$.

5.7 Good news - there actually isn't much of a pay differential by race

Table 32: Distribution of Total Compensation by Race

Category	N	Median	Mean	St Dev
White	195	$\$ 67,500$	$\$ 80,222$	$\$ 25,211$
Non-White	64	$\$ 67,500$	$\$ 77,208$	$\$ 24,592$
Grand Total	259	$\$ 67,500$	$\$ 79,478$	$\$ 25,046$

Table 33: Regression of Salary on Race, Years of Experience, and Management Responsibilities

	Dependent variable:
	Total Compensation
White	$\begin{gathered} 1,835.349 \\ (3,079.563) \end{gathered}$
Years of Experience	$\begin{gathered} 2,227.345^{* * *} \\ (468.350) \end{gathered}$
Manage 1-4	$\begin{gathered} 10,420.710^{* * *} \\ (3,018.413) \end{gathered}$
Manage 5-9	$\begin{gathered} 20,708.070^{* * *} \\ (5,277.534) \end{gathered}$
Manage 10+	$\begin{gathered} 24,456.580^{* * *} \\ (7,942.223) \end{gathered}$
Constant	$\begin{gathered} 60,497.970^{* * *} \\ (3,554.695) \end{gathered}$
Observations	258
R ${ }^{2}$	0.227
Adjusted R ${ }^{2}$	0.211
Residual Std. Error	$21,204.760(\mathrm{df}=252)$
F Statistic	$14.782^{* * *}(\mathrm{df}=5 ; 252)$
Note:	<0.1; ${ }^{* *} \mathrm{p}<0.05$ ' $^{* * *} \mathrm{p}<0$.

6 What are the perks?

Respondents were allowed to select multiple options. For every category, we display the percentage of respondents who selected that option (potentially among multiple).

Table 34: Distribution of Benefits Offered

Category	N	Percent
Paid vacation days	204	76.7%
401(k) or other retirement plan	200	75.2%
Paid sick days	199	74.8%
Cell phone reimbursement	159	59.8%
401(k) matching	124	46.6%
Organizational bonding activities	113	42.5%
Paid maternity leave	87	32.7%
Paid paternity leave	79	29.7%
Professional development	74	27.8%
Company credit card	31	11.7%
Day care	1	0.4%

6.1 If you care about benefits, avoid political campaigns

This graphs shows \% of respondents who report having a type of benefit by organization type among organizations with at least 20 responses. For example, 100% of respondents from labor unions report paid sick days while only 28% of respondents from political campaigns report the same.

Figure 15: Benefits Offered by Organization Type

7 How do people negotiate and what happens when they do?

As a preface to this section, we just want say for the record that even jobs that appear non-negotiable may have options for negotiation, e.g., asking for additional benefits or remote flexibility. And on the campaign side, non-negotiable may just mean negotiable if you play some hardball.

Also please note that none of these responses include promotions or other internal changes within the organization.

7.1 About half of all respondents negotiate

Table 35: Counts by Negotiation Outcomes

Category	N	Percent
No, accepted initial offer	109	41.0%
Initially asked for an amount that employer met with initial offer	22	8.3%
Initially asked for an amount and employer offered a lower amount	6	2.3%
Asked for increase, but employer did not increase offer	24	9.0%
Negotiated and received 0-4\% increase over initial offer	18	6.8%
Negotiated and received 5-9\% increase over initial offer	31	11.7%
Negotiated and received 10-15\% increase over initial offer	23	8.6%
Negotiated and received a greater than 15\% increase over initial offer	8	3.0%
Other	2	0.8%
Not Applicable	22	8.3%
Refused/Missing	1	0.4%

7.2 Men negotiate more than women, and they are more likely to succeed

Among the subset of individuals who responded with something other than "Other/Not Applicable".
Note that a successful negotiation is defined as either negotiating an amount above the initial offer or asking for an amount that the employer meets with the initial offer. An unsuccessful negotiation is one in which either the respondented asks for an initial amount that the employer fails to meet or asks for an increase that the employer does not meet.

Table 36: Counts by Negotiation Outcomes and Gender

Overall	Female		Male	
Category	N	Percent	N	Percent
Accepted Initial Offer	62	48.4%	46	41.8%
Successfully Negotiated	48	37.5%	53	48.2%
Unsuccessfully Negotiated	18	14.1%	11	10.0%

Figure 16: Negotiation Outcomes by Gender (Removing NA/Other)

7.3 Whites negotiate about as frequently as non-whites, but they are more likely to succeed

Among the subset of individuals who responded with something other than "Other/Not Applicable".
Note that a successful negotiation is defined as either negotiating an amount above the initial offer or asking for an amount that the employer meets with the initial offer. An unsuccessful negotiation is one in which either the respondented asks for an initial amount that the employer fails to meet or asks for an increase that the employer does not meet.

Table 37: Counts by Negotiation Outcomes and Race

Overall	Non-White		White	
Category	N	Percent	N	Percent
Accepted Initial Offer	25	43.9%	84	45.7%
Successfully Negotiated	18	31.6%	84	45.7%
Unsuccessfully Negotiated	14	24.6%	16	8.7%

Figure 17: Negotiation Outcomes by Race (Removing NA/Other)

7.4 Labor unions and political campaigns: places where negotiation is challenging

Note that labor unions operate using pay scales: when a position is opened, it is assigned a pay grade (or a series of grades). Each grade has a minimum and maximum salary and usually includes scheduled increases. As a result, it's difficult to negotiate salary at hire.

It's a little funny that labor unions and political campaigns, which are so different along salary, tenure, gen$\mathrm{der} /$ race composition, and benefits offered, have at least this one thing in common.

Figure 18: Negotiation Outcome by Organization Type

8 What do you think of your salary?

8.1 A plurality of respondents think they are underpaid; very few think they are overpaid

Do you think your salary or income is... (in your field, not necessarily your organization)

Table 38: Counts by Pay Opinion

Category	N	Percent
Less than others in similar positions are making	114	42.9%
About the same as others in similar positions are making	108	40.6%
More than others in similar positions are making	21	7.9%
I don't know how my salary/income compares to others'	20	7.5%
Refused/Missing	3	1.1%

8.2 Respondents who think they are underpaid actually have similar pay to respondents who think they are comparably paid

Table 39: Distribution of Total Compensation by Pay Opinion

Category	N	Median	Mean	St Dev
Less than others	112	$\$ 67,500$	$\$ 77,131$	$\$ 25,434$
About the same	105	$\$ 67,500$	$\$ 77,128$	$\$ 22,189$
More than others	20	$\$ 112,500$	$\$ 106,225$	$\$ 24,423$
Don't know	20	$\$ 67,500$	$\$ 77,400$	$\$ 24,899$
Refused/Missing	2	-	-	-
Grand Total	257	$\$ 67,500$	$\$ 79,415$	$\$ 25,133$

8.2.1 And this is true of both men and women

Table 40: Distribution of Total Compensation by Pay Opinion and Gender

Overall	Female				Male			
Category	N	Median	Mean	St Dev	N	Median	Mean	St Dev
Less than others	57	$\$ 67,500$	$\$ 72,370$	$\$ 21,212$	53	$\$ 87,500$	$\$ 82,899$	$\$ 28,707$
About the same	63	$\$ 67,500$	$\$ 74,567$	$\$ 22,574$	42	$\$ 87,500$	$\$ 80,970$	$\$ 21,286$
More than others	6	$\$ 114,750$	$\$ 102,417$	$\$ 27,469$	14	$\$ 112,500$	$\$ 107,857$	$\$ 23,916$
Don't know	8	$\$ 67,500$	$\$ 64,375$	$\$ 11,934$	11	$\$ 87,500$	$\$ 89,136$	$\$ 26,999$
Refused/Missing	1	-	-	-	1	-	-	-
Grand Total	134	$\$ 67,500$	$\$ 74,271$	$\$ 22,496$	120	$\$ 87,500$	$\$ 85,707$	$\$ 26,650$

8.3 People who work at unions are happiest with their pay, vendors/non-consultant businesses are the least

Figure 19: Pay Opinion by Organization Type

8.4 Men are more likely than women to think they're overpaid while whites and non-whites have similar opinions of their salary

Table 41: Counts by Pay Opinion and Gender

Overall	Female		Male	
Category	N	Percent	N	Percent
Less than others in similar positions are making	58	42.0%	54	43.2%
About the same as others in similar positions are making	65	47.1%	43	34.4%
More than others in similar positions are making	6	4.3%	15	12.0%
I don't know how my salary/income compares to others'	8	5.8%	11	8.8%
Refused/Missing	1	0.7%	2	1.6%

Table 42: Counts by Pay Opinion and Race

Overall	Non-White	White		
Category	N	Percent	N	Percent
Less than others in similar positions are making	30	45.5%	84	42.0%
About the same as others in similar positions are making	28	42.4%	80	40.0%
More than others in similar positions are making	4	6.1%	17	8.5%
I don't know how my salary/income compares to others'	3	4.5%	17	8.5%
Refused/Missing	1	1.5%	2	1.0%

9 How are your skillz?

As a reminder, respondents were asked to rate their skill level on a 1-10 point scale for a variety of tools and concepts.

- 1 = I have never used this tool/skill
- $5=$ I use this tool/skill regularly (or did within the past two years)
- $10=$ I feel comfortable training others on this tool/skill

9.1 Excel is still king

Turns out, the "data" in "progressive data" basically means Excel. Maybe SQL.

Figure 20: Average Score by Skill

Figure 21: Distribution of Scores by Skill

9.2 Women self-report having lower levels of "hard" skills

Note that these are self-reported levels of skills, not necessarily objective measures of skills.

Table 43: Differences in Self-Reported Skill by Gender

Skill	Skill Type	Female	Male	Difference
SQL	Data Science	5.8	7.2	1.3
Python	Data Science	3	4.3	1.3
Data Visualization	Data Science	3.8	4.9	1.1
GIS	Data Science	3.3	4.2	0.99
R	Data Science	2.8	3.7	0.93
Management	Other	5.3	6	0.71
Modeling	Data Science	2.9	3.6	0.63
Catalist Q/M Tool	Other	3.8	4.4	0.55
Experiments	Data Science	3.7	4.2	0.5
VAN	CRM	6.5	6.9	0.36
Google Analytics	Digital Tools	3.5	3.7	0.19
Microsoft Excel	Other	8.4	8.6	0.18
Facebook Ads	Digital Tools	1.9	2	0.035
CRM (Not Salesforce)	CRM	3.8	3.5	-0.3
Stata	Data Science	2.8	2.4	-0.37
Salesforce	CRM	3.2	2.8	-0.48

Figure 22: Distribution of Self-Reported Scores by Skill and Gender

\square Female \square Male

Luckily, we can actually do some basic statistics to see which of these distributions are different. We'll use a Kolmogorov-Smirnov test to see which of these skillsets actually appear to follow different distributions by gender.

Basically, we're testing the null hypothesis that the distributions are identical.

Table 44: KS Tests for Differences in Skill Distribution by Gender

Skill	Skill Type	KS Statistic	P-Value
Python	Data Science	0.23	0.0015
SQL	Data Science	0.22	0.0028
GIS	Data Science	0.21	0.0078
Modeling	Data Science	0.21	0.0084
Management	Other	0.2	0.013
Data Visualization	Data Science	0.19	0.022
Experiments	Data Science	0.18	0.027
R	Data Science	0.16	0.081
Salesforce	CRM	0.13	0.23
Catalist Q/M Tool	Other	0.11	0.45
Google Analytics	Digital Tools	0.077	0.83
Stata	Data Science	0.071	0.9
Facebook Ads	Digital Tools	0.071	0.9
VAN	CRM	0.066	0.94
CRM (Not Salesforce)	CRM	0.065	0.94
Microsoft Excel	Other	0.06	0.97

See the Appendix for a longer discussion of self-reported skillset by field.

9.3 Different jobs have different skills

Figure 23: Average Score by Skill by Job Focus

9.4 'Data Scientist' actually means something! Meanwhile, analytics director does not

First, here's a table of average score by skill type. This is helpful but a little noisy.

Figure 24: Average Score by Skill by Job Title

Here's a table of a mean-adjusted score. This will help us pinpoint the differences in skillset.
Basically, for each skill, we subtract the mean skill level from an individual's self-reported skill level so that now we're displaying the number of units above/below the mean. ${ }^{6}$ A mean-adjusted score of 0 means the selfreported skill is the average score for that skill. A mean-adjusted score of 1 means that the self-reported skill are 1 unit above the average score for the skill, a score of -1 is 1 unit below the average score for the skill.

For example, data scientists self-report scores on modeling that are about 4 units above the average self-reported score on modeling (averaged across all respondents). They also self-report scores on VAN that are about 2 units lower than the average VAN score.

Meanwhile, analytics directors do not meaningfully differentiate themselves through either hard or soft skills (see how many of the scores are near 0 , meaning they have the average level of competency for that skill).

[^4]Figure 25: Mean-Adjusted Score by Skill by Job Title

9.5 What should I learn for \$\$

You have limited time, and not all skills matter equally. So what should you learn?

9.5.1 If you're not a manager...brush up on those hard skills

Figure 26: Salary versus Skill by Skill Type for Non-Managers

Here's a graph of the slopes of those lines, basically. This is also the part where we engage in some hand-wringing about how this isn't actual a causal relationship.

Figure 27: Impact of a 1 Unit increase in Skill on Salary (shown with error bars of 1 SE) for Non-Managers

9.5.2 If you are a manager...be a better manager?

Figure 28: Salary versus Skill by Skill Type for Managers

Here's a graph of the slopes of those lines, basically. This is also the part where we engage in some hand-wringing about how this isn't actual a causal relationship.

Figure 29: Impact of a 1 Unit increase in Skill on Salary (shown with error bars of 1 SE) for Managers

10 Where are people going?

10.1 About 50% of all respondents and 35% of respondents not currently on a political campaign plan on changing organizations within the next year

Respondents were allowed to select multiple options. For every category, we display the percentage of respondents who selected that option (potentially among multiple).

Table 45: Counts by Future Work Plans

Category	N	Percent
My current job / for my current employer	139	52.3%
Consulting firm	64	24.1%
Other private sector	53	19.9%
Nonprofit/c3/c4	46	17.3%
Business (non-consulting)	41	15.4%
Other public sector	26	9.8%
Freelance	23	8.6%
Labor union	23	8.6%
Political campaign	10	3.8%
Party committee	8	3.0%

Table 46: Counts by Future Work Plans among Respondents NOT on a political campaign

Category	N	Percent
My current job / for my current employer	137	64.6%
Consulting firm	38	17.9%
Nonprofit/c3/c4	34	16.0%
Business (non-consulting)	28	13.2%
Other private sector	27	12.7%
Labor union	22	10.4%
Freelance	17	8.0%
Other public sector	12	5.7%
Political campaign	5	2.4%
Party committee	3	1.4%

11 Notes

- When treating salary as a numeric variable, we use the mean of the reported salary range (e.g., \$60,000$\$ 75,000$ was treated as $\$ 67,500$)
- We deleted 3 responses that appeared to be from people outside progressive data world (based on job description)
- When treating years of experience as a numeric variable, we use the mean of the reported range
- Job titles were bucketed
- We generally try to avoid disclosing salary statistics for groups that contain fewer than 5 individuals. In those cases, those groups are marked with '-' on a table, and those values are excluded from calcuating the totals included with the table.
- Annie wasted a few days of her life trying to cluster people into job categories based on various formulations of skills, years of experience, and job focus. She was not successful, so if you have better ideas, please let her know. ${ }^{7}$

[^5]- Annie also tried to be cool like the 2016 O'Reilly Data Science Salary Survey and fit a linear model, but she couldn't get a root mean squared error below about $\$ 20,000$, so no model for you. ${ }^{8}$

If you have any suggestions about ways to improve this analysis or next year's survey, please e-mail any one of the authors.

12 List of Tables and Figures

List of Tables

1 Counts by Gender 4
2 Counts by Location 5
3 Counts by Race/Ethnicity 5
4 Counts by Gender and Race 6
5 Counts by Sexual Identity 6
6 Counts by Education Level 7
7 Counts by Race and Education Level 7
8 Counts by Employment Status 8
9 Counts by Organization Type 8
10 Counts by Organization Type and Race 9
11 Counts by Job Focus 9
12 Counts by Management Responsibilities 9
13 Counts by Management Responsibilities and Gender 10
14 Counts by Years of Experience in Progressive Politics 11
15 Counts by Years of Experience and Gender 12
16 Distribution of Past Professional History 12
17 Counts by Skills Acquisition 13
18 Counts by Skills Acquisition and Gender 14
19 Counts by Salary Range 14
20 Summary of Total Compensation 15
21 Distribution of Total Compensation by Years of Experience 17
22 Distribution of Total Compensation by Education Level 18
23 Distribution of Total Compensation by Simplified Education Level 18
24 Distribution of Total Compensation by Job Focus 18
25 Distribution of Total Compensation by Job Title 20
26 Distribution of Total Compensation by Location 20
27 Distribution of Total Compensation by Gender 20
28 Distribution of Total Compensation by Job Focus and Gender 21
29 Distribution of Total Compensation by Organization Type and Gender 23
30 Distribution of Total Compensation by Management Responsibilities and Gender 24
31 Regression of Salary on Gender, Years of Experience, and Management Responsibilities 26
32 Distribution of Total Compensation by Race 26
33 Regression of Salary on Race, Years of Experience, and Management Responsibilities 27
34 Distribution of Benefits Offered 28
35 Counts by Negotiation Outcomes 30

[^6]36 Counts by Negotiation Outcomes and Gender 30
37 Counts by Negotiation Outcomes and Race 31
38 Counts by Pay Opinion 33
39 Distribution of Total Compensation by Pay Opinion 34
40 Distribution of Total Compensation by Pay Opinion and Gender 34
41 Counts by Pay Opinion and Gender 35
42 Counts by Pay Opinion and Race 36
43 Differences in Self-Reported Skill by Gender 39
44 KS Tests for Differences in Skill Distribution by Gender 41
45 Counts by Future Work Plans 49
46 Counts by Future Work Plans among Respondents NOT on a political campaign 49
47 Counts by Organization Type and Gender 53
48 Counts by Education and Gender 53
49 Counts by Years of Experience and Race 53
50 Differences in Self-Reported Skill by Gender among Non-Manager Analytics Practioners 54
51 Differences in Self-Reported Skill by Gender among Non-Manager Engineers 54
List of Figures
1 Counts by Race and Gender 6
2 Proportions of Educational Attainment by Race 7
3 Proportions of Managers and Non-Managers by Gender 10
4 Proportions of Years of Experience by Gender 11
5 Distribution of Work History by Current Organization Type 13
6 Distribution of Salary 15
7 Distribution of Total Compensation 16
8 Total Compensation against Years of Experience 16
9 Distribution of Total Compensation by Years of Experience 17
10 Distribution of Total Compensation by Job Focus 19
11 Distribution of Total Compensation by Job Focus and Gender 22
12 Distribution of Total Compensation by Organization Type and Gender 24
13 Total Salary against Years of Experience and Gender 25
14 Total Compensation against Years of Experience and Gender 25
15 Benefits Offered by Organization Type 29
16 Negotiation Outcomes by Gender (Removing NA/Other) 31
17 Negotiation Outcomes by Race (Removing NA/Other) 32
18 Negotiation Outcome by Organization Type 33
19 Pay Opinion by Organization Type 35
20 Average Score by Skill 37
21 Distribution of Scores by Skill 38
22 Distribution of Self-Reported Scores by Skill and Gender 40
23 Average Score by Skill by Job Focus 42
24 Average Score by Skill by Job Title 43
25 Mean-Adjusted Score by Skill by Job Title 44
26 Salary versus Skill by Skill Type for Non-Managers 45
27 Impact of a 1 Unit increase in Skill on Salary (shown with error bars of 1 SE) for Non-Managers 46
28 Salary versus Skill by Skill Type for Managers 47
29 Impact of a 1 Unit increase in Skill on Salary (shown with error bars of 1 SE) for Managers 48

30 Bonus Prevalance by Salary Range . 52

13 Appendix

This section is also known as "all the random tables you might want because you don't have access to individuallevel data". There is no meaningful ordering here.

13.1 Most people don't have a bonus

Figure 30: Bonus Prevalance by Salary Range

13.2 Women are more likely to work at labor unions and political campaigns

Table 47: Counts by Organization Type and Gender

Overall	Female		Male	
Category	N	Percent	N	Percent
Consulting firm	30	21.7%	30	24.0%
Political campaign	32	23.2%	22	17.6%
Non-profit/c3/c4	19	13.8%	22	17.6%
Labor union	20	14.5%	11	8.8%
Business (non-consulting)	17	12.3%	13	10.4%
Party committee	15	10.9%	15	12.0%
Other private sector	4	2.9%	7	5.6%
Other public sector	1	0.7%	3	2.4%
Unemployed			2	1.6%

13.3 Women have roughly the same levels of educational attainment as men

Table 48: Counts by Education and Gender

Overall	Female		Male	
Category	N	Percent	N	Percent
No College Degree	10	7.2%	9	7.2%
Bachelor's Degree	82	59.4%	78	62.4%
Post Bachelor's Work/Degree	46	33.3%	38	30.4%

13.4 Whites and non-whites have roughly comparable years of experience

Table 49: Counts by Years of Experience and Race

Overall	Non-White		White	
Category	N	Percent	N	Percent
Under 1 year	4	6.1%	15	7.5%
1-2 years	9	13.6%	20	10.0%
2-4 years	13	19.7%	48	24.0%
4-6 years	17	25.8%	50	25.0%
6-10 years	13	19.7%	43	21.5%
10 years or more	10	15.2%	24	12.0%

13.5 Even within the same job focus, women report lower skillsets

Here's that table of skill differences among analytics practioners...

Table 50: Differences in Self-Reported Skill by Gender among Non-Manager Analytics Practioners

Skill	Skill Type	Female	Male	Difference
Catalist Q/M Tool	Other	3.5	5.2	1.7
SQL	Data Science	7.1	8.6	1.5
Python	Data Science	3.8	5.2	1.4
GIS	Data Science	3.2	4.4	1.2
Microsoft Excel	Other	8.2	9.1	0.91
Data Visualization	Data Science	5.2	6.1	0.89
Modeling	Data Science	4.4	5.2	0.77
Experiments	Data Science	4.2	4.7	0.54
R	Data Science	4.4	4.8	0.48
VAN	CRM	6	6.4	0.42
Google Analytics	Digital Tools	2.6	3	0.42
Management	Other	4.6	4.9	0.37
Stata	Data Science	3	3.3	0.32
Facebook Ads	Digital Tools	1.1	1.3	0.18
Salesforce	CRM	2.4	2	-0.39
CRM (Not Salesforce)	CRM	2.8	2.1	-0.73

...and engineers.

Table 51: Differences in Self-Reported Skill by Gender among Non-Manager Engineers

Skill	Skill Type	Female	Male	Difference
GIS	Data Science	1.5	3.5	2
Data Visualization	Data Science	2.1	3.9	1.8
Python	Data Science	4.1	5.6	1.6
Management	Other	3.2	4.6	1.5
Google Analytics	Digital Tools	4.4	5.6	1.3
R	Data Science	1.8	3	1.2
SQL	Data Science	6.5	7.6	1.1
CRM (Not Salesforce)	CRM	3.2	3.8	0.62
Modeling	Data Science	1.7	2.3	0.57
Facebook Ads	Digital Tools	1	1.4	0.44
Experiments	Data Science	2.4	2.6	0.24
Salesforce	CRM	2	2.2	0.2
Stata	Data Science	1.4	1.2	-0.16
Catalist Q/M Tool	Other	1.8	1.6	-0.22
Microsoft Excel	Other	7.7	6.9	-0.82
VAN	CRM	5.8	4.1	-1.7

14 Survey Questionnaire

This survey is designed to collect information about compensation of progressive data, analytics, and technology staff. All information here should be submitted anonymously. Only aggregated responses will be made public within the community.

14.1 About You

Race/Ethnicity (multiple choice)

- Hispanic/Latino
- African-American
- Asian-American
- Native American
- Middle Eastern / Arab-American
- White
- Other (write-in)

Gender (single choice)

- Female
- Male
- Other (write-in)

Do you identify as LGBTQQIA? (single choice)
Lesbian, Gay, Bisexual, Transgender, Queer, Questioning, Intersex, Asexual

- I identify with one of these identities
- I identify with two or more of these identities
- I do not identify with any of these identities
- Other (write-in)

Highest level of education completed (single choice)

- High school/secondary school/associate's degree/some college credit but no 4-year degree
- Bachelor's degree
- Some post-bachelor's work but no higher degree
- Master's degree
- PhD or other doctoral degree
- Other (write-in)

Where did you learn the majority of skills you use in your current job? (single choice)

- Formal education
- Self taught (including Coursera and things like that)
- On the job training
- Other (write-in)

14.2 Current Job and Salary Information

Organization Type (single choice, required)

- Consulting firm (with at least some clients in progressive politics)
- Nonprofit organization/c3/c4
- Political campaign
- Business (non-consulting; e.g a technology vendor)
- Labor union
- Party committee
- Other private sector
- Other public sector
- Unemployed

Employment Status (single choice, required)

- Full time at 1 job
- Full time at 1 job plus additional paid work (2nd job, contracts, etc)
- Part time, because of personal choice
- Part time, because of inability to find full time work
- Freelance / contracting / self-employed (either FT or PT)
- Unemployed
- Other (write-in)

Location (single choice, required)

- Washington, DC
- New York City
- San Francisco
- Chicago
- Los Angeles
- Other major US city (over 1 million people)
- Smaller city/town
- Suburbs
- Exurbs
- Rural area
- Canada
- Europe
- Africa
- Oceania
- Asia

What type of benefits do you personally receive from your organization? (multiple choice)

- Cell phone reimbursement / company cell phone
- Company credit card
- Paid vacation days
- Paid sick days
- 401(k) or other retirement plan
- 401(k) matching
- Organizational bonding activities
- Continuing education / professional development
- Day care
- Paid maternity leave
- Paid paternity leave
- Other (write-in)

What type of organizations have you worked at in the past five years? (multiple choice)

- Consulting firm
- Freelance
- Nonprofit organization/c3/c4
- Political campaign
- Political-related business (non-consulting; e.g a technology or digital vendor)
- Labor union
- Party committee
- Other private sector
- Other public sector

Where do you want or expect to be working a year from now? (multiple choice)

- Consulting firm
- Freelance
- Nonprofit organization/c3/c4
- Political campaign
- Political-related business (non-consulting; e.g a technology or digital vendor)
- Labor union
- Party committee
- Other private sector
- Other public sector

Guaranteed salary range (single choice, required)
Yearly pre-tax, excluding bonuses or commissions

- Less than $\$ 30,000$
- \$30,001-\$45,000
- \$45,001 - \$60,000
- \$60,001-\$75,000
- \$75,001-\$100,000
- \$100,001-\$125,000
- $\$ 125,001$ or higher
- I have no fixed salary (freelancers, etc)
- Unemployed

Bonus or commission pay (open text)
Do you think your salary or income is...(single choice)
In your field, not necessarily your organization

- Less than others in similar positions are making
- About the same as others in similar positions are making
- More than others in similar positions are making
- I don't know how my salary/income compares to others'

Position/job title (open text)

Department, team or focus of work (single choice, required)

- General analytics or data science
- General field/grassroots-focused data (e.g. VAN admin)
- Other general data management (finance data, digital data, DBA, etc)
- Surveys / polling
- Engineering / software development
- Digital analytics
- Experiments / testing
- Consulting / client relations
- Non-tech/data campaign management (Manager, State Field Director, Digital Director, etc.)
- Other campaign staff
- General digital (e.g. digital director, online campaigner)
- Development / fundraising
- Other (write-in)

Do you manage full-time staffers? (single choice)
Include everyone who reports "up the chain" to you, both directly or through layer(s) of management

- Yes, 1 to 4
- Yes, 5 to 9
- Yes, more than 10
- No

Years of experience in the progressive space (single choice)

- Under 1 year
- 1-2 years
- 2 - 4 years
- 4-6 years
- 6-10 years
- 10 years or more

When you last took a job with a new employer, did you negotiate your salary? (single choice)
Not including promotions or other internal changes within your organization

- No, accepted initial offer
- Asked for increase, but employer did not increase offer
- Negotiated and received 0-4\% increase over initial offer
- Negotiated and received 5-9\% increase over initial offer
- Negotiated and received 10-15\% increase over initial offer
- Negotiated and received a greater than 15% increase over initial offer
- Initially asked for an amount that employer met with initial offer
- Initially asked for an amount and employer offered a lower amount
- Was offered a non-negotiable salary (union contract or other fixed band)
- Other (write-in)

14.3 Rate your skills and abilities

- $1=I$ have never used this tool/skill
- $5=$ I use this tool/skill regularly (or did within the past two years)
- $10=I$ feel comfortable training others on this tool/skill
(For all skills listed, respondents had the option of choosing one value between 1 and 10, inclusive)
VAN
Catalist Q and M tools
Google Analytics
Microsoft Excel
Salesforce
Constituent Relationship Management tools (Mailchimp, Convio, Constant Contact, etc.)
SQL
Facebook Power Editor / Business Manager
Python
GIS
R
Stata
Data visualization (Tableau, Fusion Tables, etc)
Building statistical models
Designing randomized experiments
Staff management

[^0]: ${ }^{1}$ This means we've solved the diversity problem, right?

[^1]: ${ }^{2}$ Basically, we're testing the null hypothesis that the distribution of non-whites and whites across organization types is perfectly proportional, i.e., that the percentages are all the same and the variations are just the product of statistical noise
 ${ }^{3}$ So you might argue that the sample size is too small to calculate chi-squared values. You're probably right! In fact, R even gave us a nice warning telling us that our chi-squared approximation may be incorrect. The other objection you might have is something around how we use frequentist approaches. Well, Bayesian Bro, you can write the STAN code next year.

[^2]: ${ }^{4}$ There are some survey design issues with this question in that we probably should have asked respondents to exclude their current organization

[^3]: ${ }^{5}$ Because it's not like data is easier when standardized or anything.

[^4]: ${ }^{6}$ It would be nice if we could standardize all of these to have mean 0 and SD 1 , but since so many of these are skewed in distinctly non-normal ways, we'll do this mean adjustment instead.

[^5]: ${ }^{7}$ Tried a few different things, including using PCA for feature reduction (especially for skills) and t-sne for clustering.

[^6]: ${ }^{8}$ If you must know, LASSO.

